31 research outputs found

    Evacuation plan evaluation: Assessment of vehicular evacuation schemes by means of an analytical dynamic traffic model

    Get PDF
    An evacuation model is posed, combining a dynamic travel demand component, an adaptive travel choice behaviour component, and a dynamic network loading component. The travel demand component considers the primary choice facing the endangered residents, whether to participate in the evacuation, and if so, when to depart. The travel choice behaviour component considers the secondary choice facing the evacuees, where to seek refuge and by which route to travel towards this safe destination. The network loading component considers both the dynamic traffic and hazard conditions, and propagates the evacuees through the infrastructure network. The proposed model can act on a broad spectrum of hazards, as it uses general features to compute the effects of the hazard on the evacuation. Furthermore, the model structure enables the assessment of various categories of evacuation, ranging from voluntary over recommended to mandatory. And, the behavioural responses of the evacuees towards evacuation instructions are modelled, such that instructions can be followed fully, followed in part, or rejected completely. An illustrative example of a hypothetical evacuation shows the principles and possibilities of the posed evacuation model

    Generalized Multivariate Extreme Value Models for Explicit Route Choice Sets

    Get PDF
    This paper analyses a class of route choice models with closed-form probability expressions, namely, Generalized Multivariate Extreme Value (GMEV) models. A large group of these models emerge from different utility formulas that combine systematic utility and random error terms. Twelve models are captured in a single discrete choice framework. The additive utility formula leads to the known logit family, being multinomial, path-size, paired combinatorial and link-nested. For the multiplicative formulation only the multinomial and path-size weibit models have been identified; this study also identifies the paired combinatorial and link-nested variations, and generalizes the path-size variant. Furthermore, a new traveller's decision rule based on the multiplicative utility formula with a reference route is presented. Here the traveller chooses exclusively based on the differences between routes. This leads to four new GMEV models. We assess the models qualitatively based on a generic structure of route utility with random foreseen travel times, for which we empirically identify that the variance of utility should be different from thus far assumed for multinomial probit and logit-kernel models. The expected travellers' behaviour and model-behaviour under simple network changes are analysed. Furthermore, all models are estimated and validated on an illustrative network example with long distance and short distance origin-destination pairs. The new multiplicative models based on differences outperform the additive models in both tests

    A Cluster Analysis of Temporal Patterns of Travel Production in the Netherlands: Dominant within-day and day-to-day patterns and their association with Urbanization Levels

    Get PDF
    This paper explores temporal patterns in travel production using a full month of production data from traffic analysis zones (TAZ) in the (entire) Netherlands. The mentioned data is a processed aggregated derivative (due to privacy concerns) from GSM traces of a Dutch telecommunication company. This research thus also sheds light on whether such a processed data source is representative of both regular and non-regular patterns in travel production and how such data can be used for planning purposes. To this end, we construct normalized matrix (heatmap) representations of weekly hour-by-hour travel production patterns of over 1200 TAZs, which we cluster using K-means combined with deep convolutional neural networks (inception V3) to extract relevant features. A silhouette score shows that three dominant clusters of temporal patterns can be discerned (K=3). These three clusters have distinctly different within-day and day-to-day production patterns in terms of peak period intensity over different days of the week. Subsequently, a spatial analysis of these clusters reveals that the differences can be related to (easily observable) land-use features such as urbanization levels (i.e., Urban, Rural, and mixed-level). To substantiate this hypothesis and the usefulness of this clustering result, we apply an OVR-SMOTE-XGBoost ensemble classification model on the land-use features of the TAZs (i.e., to identify their cluster). The results of our clustering analysis show that given the land-use features, the overall production patterns are identifiable. Further analysis of the mixed-level areas shows a more complex relationship between temporal heterogeneity and spatial characteristics. Population density seems to impose additional uncertainty on the temporal patterns. All in all, feature selection and spatial and temporal discretization play essential roles in identifying the dominant trip production patterns. These findings are directly useful for data-driven estimation and prediction of demand time series. Furthermore, this study provides further insights into people's mobility, relevant for transportation analysis and policies

    New approaches to evacuation modelling for fire safety engineering applications

    Get PDF
    This paper presents the findings of the workshop “New approaches to evacuation modelling”, which took place on the 11th of June 2017 in Lund (Sweden) within the Symposium of the International Association for Fire Safety Science (IAFSS). The workshop gathered international experts in the field of fire evacuation modelling from 19 different countries and was designed to build a dialogue between the fire evacuation modelling world and experts in areas outside of fire safety engineering. The contribution to fire evacuation modelling of five topics within research disciplines outside fire safety engineering (FSE) have been discussed during the workshop, namely 1) Psychology/Human Factors, 2) Sociology, 3) Applied Mathematics, 4) Transportation, 5) Dynamic Simulation and Biomechanics. The benefits of exchanging information between these two groups are highlighted here in light of the topic areas discussed and the feedback received by the evacuation modelling community during the workshop. This included the feasibility of development/application of modelling methods based on fields other than FSE as well as a discussion on their implementation strengths and limitations. Each subject area is here briefly presented and its links to fire evacuation modelling are discussed. The feedback received during the workshop is discussed through a set of insights which might be useful for the future developments of evacuation models for fire safety engineering

    Introduction to the Special Section: TRISTAN IX

    No full text

    Preface

    No full text

    Including passengers’ response to crowding in the Dutch national train passenger assignment model

    No full text
    Transit passengers’ response to crowded conditions has been studied empirically, yet is limitedly included in transport models currently used in the design of policy and infrastructure investments. This has consequences for the practical applicability of these models in studies on, for instance, timetabling, train capacity management strategies, project appraisal, and passenger satisfaction. Here we propose four methods to include the effect of crowding, based on existing studies on passengers’ perception and response as well as often-used crowding indicators. These four alternative methods are implemented in the train passenger assignment procedure of the Dutch national transport model, and evaluated with respect to their impacts on the model results for the Dutch railway network. The four methods relate to four different ways in which an additive trip penalty and/or time-multiplier can be incorporated in the train utility function for different travel purposes, to capture the disutility of crowding as measured by the load factor. The analyses of the test case favor the hybrid method using both a boarding penalty (capturing seat availability upon boarding) and a time-multiplier (capturing physical comfort and safety throughout the trip). This method produces consistent results, while the additional computational effort that it imposes is acceptable. Further empirical underpinning is needed to conclusively show which of these methods best captures passengers’ response behavior quantitatively (for different travel purposes and conditions)

    Travel demand matrix estimation for strategic road traffic assignment models with strict capacity constraints and residual queues

    Get PDF
    This paper presents an efficient solution method for the matrix estimation problem using a static capacity constrained traffic assignment (SCCTA) model with residual queues. The solution method allows for inclusion of route queuing delays and congestion patterns besides the traditional link flows and prior demand matrix whilst the tractability of the SCCTA model avoids the need for tedious tuning of application specific algorithmic parameters. The proposed solution method solves a series of simplified optimization problems, thereby avoiding costly additional assignment model runs. Link state constraints are used to prevent usage of approximations outside their valid range as well as to include observed congestion patterns. The proposed solution method is designed to be fast, scalable, robust, tractable and reliable because conditions under which a solution to the simplified optimization problem exist are known and because the problem is convex and has a smooth objective function. Four test case applications on the small Sioux Falls model are presented, each consisting of 100 runs with varied input for robustness. The applications demonstrate the added value of inclusion of observed congestion patterns and route queuing delays within the solution method. In addition, application on the large scale BBMB model demonstrates that the proposed solution method is indeed scalable to large scale applications and clearly outperforms the method mostly used in current practice
    corecore